El futuro es hoy: Integrando la inteligencia artificial en la práctica médica

Main Article Content

Pedro Errázuriz G.

Keywords

Inteligencia artificial, ética médica, atención al paciente

Resumen

La inteligencia artificial (IA) está transformando rápidamente la práctica clínica, ofreciendo diversas aplicaciones en múltiples ámbitos de la atención médica. Las tecnologías impulsadas por IA, como el aprendizaje automático, el procesamiento del lenguaje natural y la visión computacional, facilitan tareas como el triaje de pacientes, programación de citas, síntesis de antecedentes mé­dicos, apoyo diagnóstico y análisis predictivos para condiciones críticas como la sepsis. Además, la IA. permite generar contenidos educativos, programas de rehabilitación y mejorar la adherencia terapéutica mediante herramientas personalizadas de monitoreo. A pesar de estos prometedores avances, su implementación exige abordar desafíos éticos relacionados con la confidencialidad de los datos, amplificación de sesgos, transparencia y responsabilidad. Para aprovechar plenamente el potencial clínico de la IA, es fun­damental capacitar adecuadamente a los profesionales de la salud, asegurar la participación informada de los pacientes e integrar responsablemente estas tecnologías en la práctica médica cotidiana.

Abstract 219 | PDF Downloads 255

Citas

1. Al-Kahtani M, Alshammari A, Alreshidi A, Alotaibi B, Alsaif H, Alshehri M, et al. Investigating Students' Perceptions towards Artificial Intelligence in Medical Education. BMC Medical Education. 2023;23:97.

2. Alomran S, Alfarrah Y, Alyousif SM, Alzahrani A, Aldossary M, Alsugheir Z, et al. ChatGPT and the Future of Digital Health: A Study on Healthcare Workers' Perceptions and Expectations. Healthcare (Basel). 2023;11(8):1212.

https://doi.org/10.3390/healthcare11131812

3. Alyazidi A, Dashti F, Almukhaizeem Y, et al. Student perspectives on the integration of artificial intelligence into healthcare services: a cross-sectional study. BMC Medical Education. 2023;23:300.

4. Moazzami B, Salehi M, Purohit G. Applications of Artificial Intelligence in Appointment Scheduling in Healthcare: A Review. Journal of Healthcare Engineering. 2021;2021:6617075.

5. Menezes MCS, Hoffmann AF, Tan ALM, Nalbandyan M, Omenn GS, Mazzotti DR, et al. The potential of Generative Pre-trained Transformer 4 (GPT-4) to analyse medical notes in three different languages: a retrospective model-evaluation study. Lancet Digit Health. 2025;7(1):e35-43.

https://doi.org/10.1016/S2589-7500(24)00246-2

6. Taylor RA, Chmura C, Hinson J, Steinhart B, Sangal R, Venkatesh AK, et al. Impact of Artificial Intelligence-Based Triage Decision Support on Emergency Department Care. NEJM AI. 2025;2(3):e2400296.

https://doi.org/10.1056/AIoa2400296

7. Abdel-Hafez A, Jones M, Ebrahimabadi M, Ryan C, Graham S, Slee N, et al. Artificial intelligence in medical referrals triage based on Clinical Prioritization Criteria. Front Digit Health. 2023 Oct 27;5:1192975.

https://doi.org/10.3389/fdgth.2023.1192975

8. Brin D, Sorin V, Vaid A, Soroush A, Glicksberg BS, Charney AW, et al. Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments. Sci Rep. 2023;13:16492.

https://doi.org/10.1038/s41598-023-43436-9

9. Gilson A, Safranek CW, Huang T, Socrates V, Chi L, Taylor RA, Chartash D. How Does ChatGPT Perform on the United States Medical Licensing Examination (USMLE)? The Implications of Large Language Models for Medical Education and Knowledge Assessment. JMIR Med Educ. 2023;9:e45312.

https://doi.org/10.2196/45312

10. Bicknell BT, Butler D, Whalen S, Ricks J, Dixon CJ, Clark AB, et al. ChatGPT-4 Omni Performance in USMLE Disciplines and Clinical Skills: Comparative Analysis. JMIR Med Educ. 2024;10:e63430.

https://doi.org/10.2196/63430

11. Rojas M, Rojas M, Burgess V, Toro-Pérez J, Salehi S. Exploring the Performance of ChatGPT Versions 3.5, 4, and 4 With Vision in the Chilean Medical Licensing Examination: Observational Study. JMIR Med Educ. 2024;10:e55048.

https://doi.org/10.2196/55048

12. McDuff D, Schaekermann M, Tu T, Palepu A, Wang A, Garrison J, et al. Towards accurate differential diagnosis with large language models. arXiv. 2023;arXiv:2312.00164. Disponible en: https://arxiv.org/abs/2312.00164

13. Kirchner GJ, Kim RY, Weddle JB, Bible JE. Can Artificial Intelligence Improve the Readability of Patient Education Materials? Clin Orthop Relat Res. 2023;481(11):2260-2267.

https://doi.org/10.1097/CORR.0000000000002668

14. Bhargava A, López-Espina C, Schmalz L, Khan S, Watson GL, Urdiales D, et al. FDA-Authorized AI/ML Tool for Sepsis Prediction: Development and Validation. NEJM AI. 2024;1(12):e2400867.

https://doi.org/10.1056/AIoa2400867

15. Witharana P, Chang L, Maier R, Ogundimu E, Wilkinson C, Athanasiou T, et al. Feasibility study of rehabilitation for cardiac patients aided by an artificial intelligence web-based programme: a randomised controlled trial (RECAP trial)-a study protocol. BMJ Open. 2024;14:e079404.

https://doi.org/10.1136/bmjopen-2023-079404

16. Dalko K, Elsuson HA, Kalter I, Zilezinski M, Hofstetter S, Stoevesandt D, et al. Virtual reality applications for the implementation of domestic respiratory rehabilitation programs for patients with long COVID and post-COVID condition: scoping review. JMIR Serious Games. 2024;12:e52309.

https://doi.org/10.2196/52309

17. Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med. 2023;183(6):589-596. doi:10.1001/jamainternmed.2023.1838

https://doi.org/10.1001/jamainternmed.2023.1838

18. Heinz MV, Mackin DM, Trudeau BM, Bhattacharya S, Wang Y, Banta HA, et al. Randomized Trial of a Generative AI Chatbot for Mental Health Treatment. NEJM AI. 2025;2(4).

https://doi.org/10.1056/AIoa2400802

19. Pérez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, et al. Digital technology to improve medication adherence in adults with cardiovascular disease: a systematic review and meta-analysis. Front Digit Health. 2022;3:669869. doi:10.3389/fdgth.2021.669869

https://doi.org/10.3389/fdgth.2021.669869

20. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020;27(3):491-497.

https://doi.org/10.1093/jamia/ocz192

21. Esquerda M, Esquerda-Pifarré F, Pifarré J. Deep ethics: Ética para el uso de la inteligencia artificial en medicina. Labor Hospitalaria. 2020;327:51-59.

22. Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019;64:277-282.

https://doi.org/10.1016/j.jocn.2019.03.001